Smt. S R Patel Engineering College, Dabhi

Cover page of Lecture Notes

Faculty Name: Asst. Prof. Harshad C Patel

Branch: ME Semester: 7th $^{\text {th }}$

Name of Subject: CIM Chapter/ Unit No.

CAPP
7

CAPP

Prepared By

 H. C. Patelन हि ज्ञानेन सदूरं पवित्रमिह वियते।
Smt. S. R. PATEL
Elginererng college

Forecasting is essential for a number of planning decisions

LONG TERM DECISIONS

- New Product Introduction
- Plant Expansion

MEDIUM TERM DECISIONS

- Aggregate Production Planning
- Manpower Planning
- Inventory Policy

SHORT TERM DECISIONS

- Production planning
- Scheduling of job orders

PLANNING PROCESS

- A Forecast of Demand is an essential Input for Planning

METHODS OF FORECASTING

- (a) Subjective or intuitive methods
- Opinion polls, interviews
- Brainstorming
- DELPHI
(b) Methods based on averaging of past data
- Moving averages
- Exponential Smoothing

METHODS OF FORECASTING

(c) Regression models on historical data

- Trend extrapolation
(d) Causal or econometric models
(e) Time - series analysis using stochastic models
- Box Jenkins model

COMMONLY OBSERVED "NORMAL" DEMAND PATTERNS

ABNORMAL DEMAND PATTERNS

Transient Impulse

Sudden Rise

Sudden Fall

DELPHI

A structured method of obtaining responses from experts.

- Utilizes the vast knowledge base of experts
- Eliminates subjective bias and 'influencing' by members through anonymity
- Iterative in character with statistical summary at end of each round (Generally 3 rounds)
- Consensus (or Divergent Viewpoints) usually emerge at the end of the exercise.

DELPHI

- Mean
- Median
-Std deviation
A Statistical
summary
can be given at end of each round

Month	Demand	3 months MA	6 months MA
JAN	199		
FEB	202		
MAR	199	200.00	
APR	208	203.00	
MAY	212	206.33	
JUN	194	203.66	202.33
JUL	214	205.66	207.83
AUG	220	208.33	210.83
SEP	219	216.66	213.13
OCT	234	223.33	217.46
NOV	219	223.00	218.63
DEC	233	227.66	225.13

MOVING AVERAGES

- K PERIOD MA = AVERAGE OF K MOST RECENT OBSERVATIONS

For instance :
3 PERIOD MA FOR MAY
= Demands of Mar, Apr, May / 3
$=(199+208+121) / 3=206.33$

CHARACTERISTICS OF MOVING AVERAGES

1) MOVING AVERAGES LAG A TREND

IT
2) MOVING AVERAGES ARE OUT OF PHASE FOR CYCLIC DEMAND

IT

3) MOVING AVERAGES FLATTEN PEAKS

$F_{t}=$ one period ahead forecast made at time time t
$D_{t}=$ actual demand for period t
$\alpha=$ Smoothing constant (between 0 \& 1)
(generally chosen values lie between 0.01 and 0.3)
$F_{t}=F_{t-1}+\alpha\left(D_{t}-F_{t-1}\right)$

$$
\begin{aligned}
F_{t}= & \alpha D_{t}+(1-\alpha) F_{t-1} \\
= & \alpha D_{t}+(1-\alpha)\left[\alpha D_{t-1}+(1-\alpha)^{2} F_{t-2}\right] \\
= & \ldots \ldots \\
= & \alpha\left[D_{t}+(1-\alpha) D_{t-1}+(1-\alpha)^{2} D_{t-2}+\ldots \ldots\right. \\
& \left.\quad+(1-\alpha)^{t-1} D_{1}+(1-\alpha)^{t} F_{0}\right]
\end{aligned}
$$

Weightages given to past data decline exponentially.

MOVING AVERAGES AND EXPONENTIAL SMOOTHING

(Equivalence between $\alpha \& N$:)

$$
\alpha=2 /(N+1)
$$

COMMON REGRESSION FUNCTIONS

d_{t} ' forecast
d_{t} actual demand (for time period t)
$\mathrm{d}_{\mathrm{t}}{ }^{\prime}=\mathrm{a}+\mathrm{bt}$ (parameters a, b)

$\mathrm{d}_{\mathrm{t}}{ }^{\prime}=\mathrm{a}+\mathrm{u} \operatorname{Cos}(2 \pi / n) \mathrm{t}+\mathrm{v} \operatorname{Sin}(2 \pi / n) \mathrm{t}$ (parameters $\left.\mathrm{a}, \mathrm{u}, \mathrm{v}\right)$

Parameters Determined by Minimizing the Sum of Squares of errors

REGRESSION

Hen

Standard error of estimate $=\underset{t=1, n}{V} \sum_{t}\left(D_{t}-F_{t}\right)^{2}$

$$
=7.32
$$

Where
$D_{t}=$ actual demand for period t
$\mathrm{F}_{\mathrm{t}}=$ forecast for period t
$\mathrm{n}=\mathrm{no}$. of data points
$\mathrm{f}=$ degrees of freedom lost (2 in this case)
95% confidence limits for forecast of next JAN $\simeq 232 \pm 14$ (2 sigma limits)

TIME SERIES ANALYSIS

- Time series decomposed into
- Trend
- Seasonality
- Cycle
- Randomness

And Forecast generated from these components

- Trend,
- Seasonality
- Cycle
- Randomness
S_{t}

T_{t}

R_{t}
nan drum

IT

EXAMPLE 1

	Past Sales	Average Sales(1000 4)	Seasonal Factor
Spring	200	250	$200250=0.8$
Summer	350	250	$3501250=1.4$
Fall	300	250	$3001250=1.2$
Wirter	150	250	$1501250=0.6$
TOTAL $=1000$			

Expected Nextyear Average Sales demand

Spring

Summer
Fall
Wirter

$$
\text { TOTAL }=1100
$$

Seasonal Factor (1100:4)
275
275
275
275
$2001250=0.8$
$3501250=1.4$
$3001250=1.2$
$1501250=0.6$

Next Year Forecast

$$
\begin{aligned}
& 275 * 0.8=220 \\
& 275 * 1.4=385 \\
& 275 * 1.2=330 \\
& 275 * 0.6=165
\end{aligned}
$$

EXAMPLE 2

- Computing Trend \& Seasonal Factor on a 2 year demand history

Quater	Amount	Quater	Amount
I-2000	300	I-2001	520
II-2000	200	$I I-2001$	420
II 2000	220	III -2001	400
IV 2000	530	IV -2001	700

Quater	Demand	From tiend equsion	Ratio of actulutrend	Seasonaliactor		
2000		$\mathrm{T}=170+55 \mathrm{t}$				
1	300	225	$1.33 \longrightarrow$	1.25		
\\|	200	280	$0.71 \longrightarrow \\|$	0.78		
\|	I	220	335	$0.66 \rightarrow$ \|		0.69
IV	530	390	$1.36 \rightarrow \mathrm{~V}$	1.25		
2001						
।	520	445	1.17			
I	420	500	$0.84-$			
\|II	400	555	0.72 -			
IV	700	610	1.15			

IN

- Forecast for 2002 using Trend and Seasonal factors

	Trend	Seasonalaratior	Fovecast
1.2002	[170+55*09]	1.25	831
\|1.2002	[170+55*09]	0.78	562
\|1. 2002	[$170+55^{5+09]}$	0.69	535
IV-2002	[$\left.170+55^{\circ} 09\right]$	1.25	1,038
Trend * Seasonal factor= Forecast			

EXAMPLE 3

- For the given demand history prepare a forecast using decomposition

Period	Activa	Period	Actusa
1	300	5	416
2	540	6	760
3	885	7	1191
4	580	8	760

PeriodX	Actual Y	Period Average	Seasonal Factor	Deseasonalised demand
1	300	358	0.527	56899
2	540	650	0.957	564.09
3	885	1038	1.529	578.92
4	580	670	0.987	587.79
5	416		0.527	789.01
6	760		0.957	793.91
7	1191		1.529	779.08
8	760		0.687	770.21
TOTAL	5432	2716	8.0	
AVERAGE	679	679	1.0	

PeriodX	Deseasonalised demand	y	x^{2}	y
1	568.99	358	1	569.0
2	564.09	650	4	1128.2
3	578.92	1038	9	1736.7
4	587.79	670	16	2351.2
5	789.01		25	3945.0
6	793.91		36	4763.4
7	779.08		49	5453.6
8	770.21		64	6161.7
TOTAL	5432		204	$26,108.8$
AVERAGE	679			

The regression equation for deseasonalized data:

$$
\begin{aligned}
& b=\frac{26108-(8)(4.5)(679)}{9204)-(8)(4.5)^{2}}=39.64 \text { (slope of st. line) } \\
& a=\bar{Y}-\overline{b x}=679-39.64(4.5)=500.6 \text { (intercept of st. lin } \epsilon \text {) }
\end{aligned}
$$

Thus, $Y=500.6+39.64 x$ is the result of the deseasonalized regression line

Period	Trend forecast		Seasonal ficior		Final forecast
9	857.4	$*$	0.527	$=$	452.0
10	897.0	$*$	0.957	$=$	858.7
11	936.7	$*$	1.529	$=$	1431.9
12	976.3	$*$	0.987	$=$	963.4

[FT

Forecasting System

Past Data

Forecast
Generation

Managerial Judgement \&
Experience
Modified

* Forecast

$$
\overline{M R}=\left|\left(F_{t}-D_{t}\right)-\left(F_{t-1}-D_{t-1}\right)\right|
$$

(Moving Range)

$$
\overline{M R}=\Sigma \overline{M R} /(n-1)
$$

(There are $\mathrm{n}-1$ moving ranges for n period)
Upper Control Limit (UCL) $=+2.66 \mathrm{MR}$
Lower Control Limit $($ LML $)=-2.66 \mathrm{MR}$

VARIABLE TO BE PLOTTED $=\left(F_{t}-D_{t}\right)$

(Control Chart for Example)

CORRELATION vs REGRESSION ?

- Correlation examines if there is an association between two variables, and if so to what extent.
- Regression establishes an appropriate relationship between the variables

Positive correlation

No correlation

Negative correlation

Non-linear association

THE CORRELATION COEFFICIENT

- Pearson's correlation coefficient,

$$
=\frac{(1 / n) \operatorname{Sum}[(X-\bar{X})(Y-\bar{Y})]}{\operatorname{sigma} X \operatorname{sigma} Y}
$$

(The numerator is the Co-variance between X and Y)

Advertisement expenditure (X) vs Sales (Y) figures for 10 years in Lacs of Rupees.

S.No.	X	Y	$X=X-\bar{X}$	$Y=Y-\bar{Y}$	$x 2$	12	$x y$
1	50	700	21	274	441	75,076	5,754
2	50	650	21	274	441	50,176	4,704
3	50	600	21	174	441	30,276	3,654
4	40	500	11	74	121	5,476	814
5	30	450	1	24	1	576	24
6	20	400	-9	-26	81	676	234
7	20	300	-9	-126	81	15,876	1,134
8	15	250	-14	-176	196	30,976	2,464
9	10	210	-19	-216	361	46,656	4,104
10	5	200	-24	-226	576	51,076	5,424
Total	290	4260	0	0	2,740	$3,06,840$	28,310

IT
$\bar{X}=290 / 10=29: \bar{Y}=4260 / 10=426$
$r=\Sigma x y /\left[\Sigma x^{2} \Sigma y^{2}\right]^{1 / 2}$

$$
=28310 /(2740 * 306840)^{1 / 2}=0.976
$$

Coefficient of Determination $=r^{2}=0.953$

What is Regression ?

- Discovering how a dependent variable (Y) is related to one or more independent variables (X)

Criterion for best fit ?

Least Squares Criterion is the gen erally preferred criterion $[1 \%$

Fitting a Straight Line

$\mathrm{Ft}=\mathrm{a}+\mathrm{bt}$ is the equation of the line to be fitted

- Ft is the fitted function for time t
- Dt is the actual demand for period t
- Past data is available for n periods
- Parameters $a \& b$ have to be estimated from the data using least squares criterion

Least Squares Normal Equations

SSE $=\Sigma(D t-F t)^{2}=\Sigma(D t-a-b t)^{2}$
To minimize (SSE)
$d(S S E) / d a=\Sigma 2(D t-a-b t)(-1)=0$
$d(S S E) / d b=\Sigma 2(D t-a-b t)(-t)=0$
Or

$$
\begin{aligned}
& a(n)+b(\Sigma t)=\Sigma D t \\
& a(\Sigma t)+b\left(\Sigma t^{2}\right)=\Sigma t D t
\end{aligned}
$$

These are two linear simultaneous equations in the two unknown parameters a and b which can be solved by any of the well known methods eg Cramer's Rule.These equations are called Least Squares Normal Equations

Least Squares Normal Equations

$a(n)+b(\Sigma t)=\Sigma D t \quad a(\Sigma t)+b\left(\Sigma t^{2}\right)=\Sigma t D t$
(Least Squares Normal Equations)
$a=\left|\begin{array}{cc}\sum D D t & \Sigma t^{2}\end{array}\right|=\frac{\Sigma D t \Sigma t^{2}-\Sigma t \Sigma t D t}{n \Sigma t^{2}-(\Sigma t)^{2}} \quad b=\frac{\left|\begin{array}{cc}n & \Sigma D t \\ \Sigma t & \Sigma t D t\end{array}\right|}{\left|\begin{array}{cc}n & \Sigma t \\ \Sigma t & \Sigma t^{2}\end{array}\right|}=\frac{n \Sigma t D t-\Sigma t \Sigma D t}{n \Sigma t^{2}-(\Sigma t)^{2}}$

Organizing Computations

S.No.

1
2
n

TOTAL

Di
[1
[2

Dn

ti2
t12t22
trin

Computational Simplifications

- By choosing an origin and scale of data such that $\Sigma t=0$, the values of the parameters become :

$$
\begin{aligned}
& \mathrm{a}=\Sigma \mathrm{Dt} / \mathrm{n} \\
& \mathrm{~b}=\Sigma \mathrm{tDt} / \Sigma \mathrm{t}^{2}
\end{aligned}
$$

(This is useful for equally spaced data with even or odd number of data points)

DEMAND HISTORY

Month	Demand
JAN	199
FEB	202
MAR	199
APR	208
MAY	212
UUN	194
JUL	214
AUG	220
SEP	219
OCT	234
NOV	219
DEC	233

AGGREGATE PRODUCTION PLANNING

- Concerned with planning overall production of all products combined (in tonnes of steel, litres of paint etc.) Over a planning horizon (generally next 3 to 6 months) for a given (forecast) demand schedule.

AGGREGATE PRODUCTION PLANNING

Forecast of Demand

A good production plan should

- be consistent with organisational policy
- meet demand requirements
- be within capacity constraints
- minimizes costs

Planning Level
Policy, Product, Process,
Orientation
Long Range \& Plant Decisions

Strategic

Intermediate Range Aggregate
Linking Activity

Short Range Operations Decisions Operational

- - LONG RANGE
- products
- Processes
- plant location
- plant layout
- INTERMEDIATE RANGE (Aggregates)
- output rates
- employment levels
- inventory
- subcontracting
- SHORT RANGE
- job assignments
- machine loading
- job sequencing
- lot sizes

Key Linkages of Production Planning

Top-Down Planning

Long Range

Aggregate Planning

Master Production Scheduling
Material Requirements Planning (MRP)
Detailed Scheduling (Shop Floor Control)

Short
Range

- The planning performed in other MPC system modules is necessarily detailed, and the language is quite different from that required for production planning
- The production plan might be stated in rupees or aggregate units of output per month while the MPS could be in end product units per week
- MPS might be stated in units that use special bills of materials to manage complicated options

Planning Stages

Aggregate Plan

Master Production P1

Aggregate Planning Strategies

SUPPLY

Workforce
hire / fire
overtime / slack
temporaries
extra shifts
Inventory
Subcontracting
Product Mix
DEMAND
Pricing
Promotion
Customer Service
Backorders

Demand Effect: Contracyclical Products

Aggregate Planning Function

MANAGEMENT OPTIONS TO MEET FLUCTUATING DEMAND

- Build inventories in slack periods in anticipation of higher demands later in planning horizon.
- Carry backorders or tolerate lost sales during peak periods.
- Use over time in peak periods, under time in slack periods to vary output, while holding work force and facilities constant.
- Vary capacity by changing size of work force through hiring and firing.
- Vary capacity through changes in plant and equipment (generally long term option)
- Subcontracting may be resolved.

Each option involves cost (tangible or intangible). Aim in aggregate production planning is to choose best option.

KINDS OF COSTS INVOLVED

- Procurement Costs
- Production Costs
- Inventory holding Costs
- Shortage losses associated with backorders and lost sales
- Costs of increasing / decreasing work force
- Cost of overtime / under time
- Cost of changing production rates (Set ups, opportunity losses etc)

Period	Expected Demand	Cumulative Demand
1	100	100
2	180	280
3	220	500
4	150	650
5	100	950
6	200	950
7	250	1200
8	300	1500
9	260	1760
10	250	2010
11	240	2250
12	210	2460
13	140	2600

- Expected sales for one year planning horizon broken into 13 (4 week) periods.

ANALYSIS OF PLAN 1

Period	Production	Inventory	Back Order	Capacity change	Over time	Sub - contract
1	200	100	0	+20	0	0
2	200	120	0	0	0	0
3	200	100	0	0	0	0
4	200	150	0	0	0	0
5	200	250	0	0	0	0
6	200	250	0	0	0	0
7	200	100	0	0	0	0
8	200	0	0	0	0	0
9	200	0	0	0	0	0
10	200	0	0	0	0	0
11	200	0	0	0	0	0
12	200	0	0	0	0	0
13		0	0	0	0	0

ANALYSIS OF PLAN 2

Period	Production	Inventory	Back Order	Capacity change	Over time	Sub - contract
1	150	50	0	-30	0	0
2	150	20	0	0	0	0
3	150	0	50	0	0	0
4	150	0	50	0	0	0
5	150	0	0	0	0	0
6	250	50	0	0	0	40
7	250	50	0	0	40	10
8	250	100	0	0	40	10
9	250	0	10	0	40	10
10	250	250				40
11	2				10	

ASSUMPTIONS

All shortages backlogged
Regular Time Capacity $=200$ units/period Max. Overtime $=20 \%$ of Regular Time
Capacity
Overtime Preferable to Subcontract
Assumed Initial Inventory = 0 Initial Regular Time Prodn. Capacity $=180$

NATURE OF COSTS AND SOLUTION PROCEDURES

Production Cost

Inventory Cost
Linear Cost

- LP Simplified
- Transportation
- Transportation

Aggregate Production Planning Modelling Approaches

- SOLUTION TECHNIQUES

- Linear costs
- Linear Programming
- Transportation Model
- Piecewise linear and Convex costs
- Holt, Modigliani, Muth and Simon's LDRs
- Transportation Model
- Concave and Arbitrary Costs
- Network based Model
- Non linear programming

LP : Definition of Variables

- $r, v=$ cost /unit produced during regular time and overtime respectively
- $\mathrm{Pt}, \mathrm{Ot}=$ units produced during regular time and overtime, respectively
- H,f = hiring and layoff costs per unit, respectively
- At, Rt = number of units increased or decreased, respectively, during consecutive periods
- C = inventory costs [per unit per period
- Dt = sales forecast
- $\mathrm{Mt}, \mathrm{Yt}=$ Available regular time and overtime capacities respectively

Transportation Model

Period	1	2	3	4
Demands	100	105	200	95
Production capacity(units)				
Regular time	100	80	120	60
Overtime	40	40	50	30
Production Costs (Rs)				
Regular time	16	20	22	18
Overtime	24	30	30	26
Holding cost/unit/period (Rs)	2	2	4	5
Initial on hand inventory (units)	50 units			
Final desired inventory (units)	20 units			

Setting up the Transportation Problem

	D1	D2	D3	D4	lfinal	Dummy	
lin							50
R1							100
O1							40
R2							80
O2							40
R3						120	
O3						50	
R4						60	
O4							30

Introducing Unit Costs

	[1	D2	D3	[4	lifinal	Duminy	
lin	0	2	4	8	13	0	50
R1	16	18	20	24	29	0	100
01	24	26	28	32	37	0	40
R2		20	22	26	31	0	80
02		30	32	36	41	[40
R3			22	26	31	0	120
03			30	34	39	0	50
R4				18	23	0	60
04				26	31	0	30
	100	105	200	95	20	50	570

Satisfying 1st Period Demand

	D 1	D2	D3	D4	$\mathbf{I}_{\text {final }}$	$\mathbf{D u m m ~ m y ~}^{\prime}$	
$\mathbf{I}_{\text {in }}$	0 50	2	4	8	13	0	$50 / 0$
R1	16	18	20	24	29	0	$100 / 50$
$\mathbf{5 0}$							
$\mathbf{0 1}$	24	26	28	32	37	0	40
R2		20	22	26	31	0	80
$\mathbf{0 2}$		30	32	36	41	0	40
R3			22	26	31	0	120
$\mathbf{0 3}$			30	34	39	0	50
R4				18	23	0	60
$\mathbf{0 4}$				26	31	0	30

Satisfying 2nd Period Demand

	D1	D2	D3	D4	linal	Dummy	
$\mathrm{I}_{\text {in }}$	5^{0}	2	4	8	13	0	50/0
R1	5^{16}	50^{18}	20	24	29	0	100/50/0
01	24	26	28	32	37	0	40
R2		55^{20}	22	26	31	0	80/25
02		30	32	36	41	0	40
R3			22	26	31	0	120
03			30	34	39	0	50
R4				18	23	0	60
04				26	31	0	30
	100	105	200	95	20	50	570

Satisfying 3rd Period Demand

	D1	D2	D3	D4	$\mathrm{I}_{\text {final }}$	Dummy	
$\mathrm{I}_{\text {in }}$	${ }_{50} 0$	2	4	8	13	0	50/0
R1	${ }_{50}{ }^{16}$	5^{18}	20	24	29	0	100/50/0
01	24	26	$\begin{gathered} 28 \\ 40 \end{gathered}$	32	37	0	40/0
R2		55^{20}	${ }_{25}{ }^{22}$	26	31	0	80/25/0
02		30	32	36	41	0	40
R3			$\begin{array}{\|r} \hline 22 \\ 120 \\ \hline \end{array}$	26	31	0	120/0
03			$\begin{array}{\|l\|} \hline 30 \\ 15 \end{array}$	34	39	0	50/35
R4				18	23	0	60
04				26	31	0	30
	100	105	200	95	20	50	570

Satisfying 4th Period Demand

	D 1	D 2	D 3	D 4	I final	D umimy	
$\mathrm{I}_{\text {in }}$	50	2	4	8	13	0	5010
R1	50^{16}	50^{18}	20	24	29	0	100150%
01	24	26	40^{28}	32	37	0	40%
R2		55^{20}	25^{22}	26	31	0	80/25/0
02		30	32	36	41	0	40
R3			$\begin{array}{r} 22 \\ 120 \\ \hline \end{array}$	26	31	0	120\%
03			15^{30}	5^{34}	39	0	50/35/30
R4				$\begin{array}{r} 18 \\ 60 \\ \hline \end{array}$	23	0	60%
04				$\begin{aligned} & 26 \\ & 30 \\ & \hline \end{aligned}$	31	0	30/0
	100	105	200	95	20	50	570

Satisfying final inventory restrictions

	D 1	D 2	D 3	D 4	1 final	Dummy	
I in	50	2	4	8	13	0	$50 \% 0$
R1	50^{16}	50^{18}	20	24	29	0	100/50/0
01	24	26	$\begin{array}{r} 28 \\ 40 \end{array}$	32	37	0	4010
R2		55^{20}	25^{22}	26	31	0	80/25/0
02		30	32	36	41	0	40
R3			$\begin{array}{r} 22 \\ 120 \\ \hline \end{array}$	26	31	0	120%
03			15^{30}	5^{34}	$\begin{array}{r} 39 \\ 20^{3} \\ \hline \end{array}$	0	$50 / 35 / 30 / 10$
R4				$\begin{array}{r} 18 \\ 60 \\ \hline \end{array}$	23	0	6010
04				$\begin{array}{r} 26 \\ 30 \\ \hline \end{array}$	31	0	3010
	100	105	200	95	20	50	570

Satisfying Dummy restrictions

	D 1	D 2	D 3	D 4	1 final	D ummy	
$\mathrm{I}_{\text {im }}$	$50 \quad 0$	2	4	8	13	0	5010
R 1	50^{16}	50^{18}	20	24	29	0	$100 \% 50 \% 0$
01	24	26	$\begin{gathered} 28 \\ 40 \end{gathered}$	32	37	0	4010
R2		55^{20}	25^{22}	26	31	0	80/25/0
02		30	32	36	41	40^{0}	4010
$R 3$			$\begin{gathered} 22 \\ 120 \\ \hline \end{gathered}$	26	31	0	$120 \% 0$
03			15^{30}	5^{34}	120^{39}	10^{0}	50/35/30/10/0
R 4				$\begin{array}{r} 18 \\ 60 \\ \hline \end{array}$	23	0	60%
04				30^{26}	31	0	$30 / 0$
	100	105	200	95	20	50	570

Optimal Solution

- Total Cost of optimal solution
$=$ Sum of (unit cost x quantity) $=$ Rs 10370 for the planning horizon
- This includes
- the costs of production on regular and overtime and
- the costs of holding inventories

| | Period 1 | Period 2 | Period 3 | Period 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Regular time production | 100 | 80 | 120 | 60 |
| Overtime production | 40 | ----- | 40 | 30 |

Question 1

- Consider the data shown below for sales pattern of a popular brand of oil over the past 12 weeks.

Week	1	2	3	4	5	6	7	8	9	10	11
Sales (in ' $\mathbf{0 0 0}$) Litres	17	21	19	23	18	16	20	18	22	20	15

(a) Use 3-peroiod moving average to predict the forecast. Compute the forecast error.
(b) Use Exponential smoothening to forecast sales. (alpha $=0.2$)

- (a) Moving average for (weeks 1-3) $=(17+21+19) / 3=19$

Moving average for (weeks 2-4)= $(21+19+23) / 3=21$
Similarly the forecast for remaining weeks can be computed.

Week	1	2	3	4	5	6	7	8	9	10	11	12
Sales (in '000) Litres	17	21	19	23	18	16	20	18	22	20	15	22
Moving average Forecast				19	21	20	19	18	18	20	20	19
Forecast Error				23-19=4	$18-21=-3$	$16-20=-4$	20-19=1	18-18=0	$22-18=4$	$20-20=0$	$15-20=-5$	$22-19=3$
Square of Error				16	9	16	1	0	16	0	25	9

Sum of squared error $=92$
Average sum of squared error $=92 / 9=10.22$

- (b) Using Exponential smoothening method. Assume F2=17 $\mathrm{F} 3=0.2 \mathrm{Y} 2+0.8 \mathrm{~F} 2=0.2 \times(21)+) .8 \times(17)=17.8$
Once the actual; time series vale in week $3, \mathrm{Y} 3=19$ is known, we can generate a forecast for week 4 as follows:
F4 $=0.2 \mathrm{Y} 3+0.8 \mathrm{~F} 3=0.2 \times(19)+0.8 \times(17.8)=18.04$
By continuing in this manner we obtain the following table:

Week	1	2	3	4	5	6	7	8	9	10	11	12
Sales (in 000) Litres	17	21	19	23	18	16	20	18	22	20	15	22
Exponential Smoothening Forecast		17	17.8	18.04	19.03	18.83	18.26	18.61	18.49	19.19	19.35	18.48
Forecast Error		4	1.20	4.96	-1.03	-2.83	1.74	-0.61	3.51	0.81	-4.35	3.52
Square of Error		16	1.44	24.60	1.060	8.00	3.02	0.372	12.32	0.656	18.92	12.39

Sum of squared error = 98.778
Average sum of squared error $=98.778 / 11=8.978$ (which is less compared to Moving average method in (a)).

Question 2

- The sales data for a consumer item is shown below for year 2004.

Month	Sales (Rs in ${ }^{\prime}$ ooo)
Jan	21.6
Feb	22.9
Mar	25.5
Apr	21.9
May	23.9
Jun	27.5
July	31.5
Aug	29.7
Sep	28.6
Oct	31.4

Using linear regression method, estimate the sales for the month of Nov.

- Let us indicate month as t and Sales in a month 't' as Yt Let us relabel months Jan to Oct as 1,2.. up to 10. The form of the regression equation is
$\mathrm{Yt}=\mathrm{a}+\mathrm{bt}$

\mathbf{T}	$\mathbf{Y t}$	$\mathbf{t Y t}$	$\mathbf{t 2}$
1	21.6	21.6	1
2	22.9	45.8	4
3	25.5	76.5	9
4	21.9	87.6	16
5	23.9	119.5	25
6	27.5	165.0	36
7	31.5	220.5	49
8	29.7	237.6	64
9	28.6	257.4	81
Totals	31.4	257.4	100
55	264.5	1545.5	385

4

FUNCTIONS OF INVENTORIES

- Inventories are Idle Resources maintained in various forms:
- Raw materials
- Purchased \& manufactured parts
- Subassemblies
- Finished products

Since inventories represent a sizable investment in a logistic system, we must be aware of the functions they perform.

Five categories of stocks

- PIPELINE stock (in process stock, in transit stock)

CYCLE stocks (batch production owing to

- economies of scale
- technological requirements)

SEASONAL stocks (time varying requirements of an item)
SAFETY stocks (supply and demand uncertainties,lead time uncertainties)

Stocks held for OTHER REASONS (- decoupling stages of production - price, quantity discounts,- speculation)

INVENTORY RELATED COSTS

- Procurement cost

Cost/order generally fixed (not dependent on order qty)

- Costs associated with existence of inventories (supply exceeds demand) Cost/unit/unit time i C (i = inventory carrying cost rate)
- Costs associated with stock outs (demand exceeds supply)(cost/unit) (cost/unit/unit time)

Procurement Costs

Procurement cost

Costorder generally fixed
(not dependent on order qy)

- Administrative component
- Handling
- Transportation
- Inspection of arrivals

Cost of goods

Ordering cost

Inventory Holding Costs

- Costs associated with existence of inventories (supply exceeds demand) Cost/unit/unit time
i C (i = inventory carrying cost rate)
- Storage and handling
- Interest on tied up capital
- Property taxes
- Insurance
- Spoilage
- Obsolescence
- Pilferage

Shortage Cost

- Costs associated with stock outs (demand exceeds supply) (cost/unit) (cost/unit/unit time)
- Additional costs of special order
- Backorder, if possible
- Loss of customer goodwill
- Lost sales
- Penalty costs

SELECTIVE INVENTORY CONTROL

In a large number there are

Typical organisations deal with a large variety of stocked items
(10,000 - 100,000 ... Is not uncommon)
Depending on rankings of

- VALUE ($\Sigma($ Annual demand X unit price)) \Rightarrow ABC Analysis (Always Better Control)
- CRITICALITY (Vital, Essential, Desirable) \Rightarrow VED Analysis
- USAGE FREQUENCY \Rightarrow FSN Analysis (Fast moving, Slow moving, Non moving)

Example-1

| Month | Working Days | Demand (in units) | Month | Productive Days | Demand (in units) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Jan | 22 | 8,000 | July | 22 | 26,000 |
| Feb | 19 | 12,000 | Aug | 11 | 16,000 |
| Mar | 21 | 18,000 | Sept | 21 | 18,000 |
| Apr | 22 | 20,000 | Oct | 22 | 14,000 |
| May | 21 | 28,000 | Nov | 18 | 9,000 |
| June | 21 | 25000 | Dec | 21 | 7,000 |

Additional Problem Information and Sample Values

- There are 100 employees on the payroll. Any change in employment must be accounted for in layoff or hiring costs.
- Productivity is 12 units per day per employee.
- Regular time salaries average $\$ 80$ per day.
- Capacity can be increased up to an additional 30 percent through overtime.
- Units produced on overtime cost an additional $\$ 2$ per unit.
- Units in inventory are charged at $\$ 2$ per unit per month.
- Inventory shortages are charged at $\$ 10$ per unit per month.
- Hiring and training an employee costs $\$ 300$.
- Laying off an employee costs $\$ 200$.
- Additional capacity is available through subcontracting at a cost of $\$ 8$ per unit.
- The initial inventory level is 5,000 units.
- There should be 5,000 units in inventory at the end of the problem.
- Any units less than 5,000 in inventory at the end of the problem should be charged at the shortage cost charge.
The emphasis is on developing a plan which will yield the minimum possible total cost for next year's.agryegate output.

Solution

A	B	C	D	E	F	G	H	1	J	K
Mon	Working Days	Number of Employees	Change in Employees	Regular Tine Production	Forecast Demand	Starting Inventory	Net Addditions to Inventory	End of Morth Inventory	Monthly Average Inventory	Storage Cost (92Month)
Start						5000				
Jan	22	12	. 88	3168	8000	5000	. 4832	168	2584	2016
Feb	19	60	48	13680	12000	168	1680	1848	1008	2016
Mar	21	65	5	16380	18000	1848	. 1620	228	1038	2076
Apt	22	76	11	20064	20000	228	64	292	260	50
May	21	110	34	27720	28000	292	. 280	12	152	304
Jun	21	100	- 10	22200	25000	12	200	212	112	224
Jul	22	100	0	26400	26000	212	400	612	412	824
Aug	11	117	17	15444	16000	612	. 556	56	334	668
Sep	21	72	. 45	1814	18000	56	144	200	128	256
Oct	22	53	. 19	13992	14000	200	. 8	192	196	392
Nor	18	45	. 8	9720	9000	192	720	912	552	1104
Dec	21	45	0	11340	7000	912	4340	5232	3082	6164
-..	\cdots									
TOT	241			201252	201000			9984		\$19,716

L	M	N	0	P	Q	R	S	T	U
ontinly Labor ost	LayoffCosts (\$300/Layoff)	Hiring Costs (\$200/hire)	Maximum Overtime Units	Overtime Units Built	Cost of Overtime Units	Number of Units Subcontracted	Cost of Units Subcontracted	Number of Units Short	Cost of Units Short
7920	17600	0	950	0	0	0	0	0	0
34200	0	14400	4104	0	0	0	0	0	0
40950	0	1500	4914	0	0	0	0	0	0
50160	0	3300	6019	0	0	0	0	0	0
69300	0	10200	8316	0	0	0	0	0	0
63000	2000	0	7560	0	0	0	0	0	0
66000	0	0	7920	0	0	0	0	0	0
38610	0	5100	4633	0	0	0	0	0	0
45360	9000	0	5443	0	0	0	0	0	0
34980	38000	0	4917	0	0	0	0	0	0
24300	1600	0	2916	0	0	0	0	0	0
28350	0	0	0	3402	0	0	0	0	0
\cdots									
\$503,130	\$34,000	\$34,500		0	0	0	0	0	0

Summary of Costs			
Average Unit Cost	Total Cost	Minimum Possible Cost	Percent of Minimum Cost
\$2.94	\$591,348	\$502,500	117.7\%

- A - Month (given)
- B - Working Days (given)
- C - Number of Employees (Initial number is given, then this is a decision to be made by the student)
- D - Change in Employees (calculated difference in previous month) employment
- E - Regular Time Production (Number of Working Days [B] times Number of employees [C] times 12 [Units per Day per Employee])
- F - Forecast Demand (given)
- G - Starting inventory (Initial Condition, then previous month's ending value)
- H - Net Additions to Inventory (Starting inventory[G] $+/$ - Regular Time Production[E])
- I - End of Month Inventory (Starting Inventory[G] $+/$ - Net Additions to inventory $[\mathrm{H}]+$ any units produced on overtime $[\mathrm{P}]+$ any units subcontracted $[\mathrm{R}]$)
- J - Monthly Average Inventory (Sum of Starting Inventory [G] + End of Month Inventory [EI] divided by 2)
- K - Storage Cost (Monthly Average Inventory [J] times $\$ 2$ per unit)
- L - Monthly Labor Cost (Number of Employees [C] times Working Days [B] times \$30)
- M - Layoff Costs (If month-to-month employment has decreased then multiply the Absolute Value of the Change in Employees [D] times $\$ 300$)
- N - Hiring Costs (If month-to-month employment has increased then multiply the Change in Employees [D] times $\$ 200$)
- O - Maximum Overtime Units (30% of Regular Time Production [E])
- P - Overtime Units Built (This is a decision by the student)
- Q - Cost of Overtime Units (Overtime Units Built P times $\$ 4.50$ [Regular Time Unit Cost - $\$ 30 /$ day divided by 12 units/day plus $\$ 2$ additional cost/unit])
- R - Number of Units Subcontracted (This is a decision by the student)
- S - Cost of Units Subcontracted [Number of Units Subcontracted [R] times $\$ 8$ [Cost per Subcontract Unit)
- T - Number of Units Short (If the End of Month Inventory is negative)
- U - Cost of Units Short this is the absolute value of the number of units short [I] times $\$ 10$ [the default cost of any units short]
- Average Unit Cost - Total cost divided by number of units produced
- Total Cost - Summation of costs K, L, M, N, Q, S, and S
- Mirimum Possible Cost - Forecast Demand [201,000] times Regular Time Unit Cost [\$2.50]
- Percent of Minimum Cost - Calculation of the percentage the Total Cost represents of the Minimum Possible Cost

An examination of the costs shown for the problem reveals four independent costs:

- Regular production cost per unit is $\$ 2.50$.
- Overtime production cost per unit is $\$ 4.50$.
- Subcontract purchase cost per unit is $\$ 8.00$.
- The default cost of shortages is $\$ 10.00$ per unit.

Figure 1

Priod		1	2	3	4	5	6
Foreoast		100	150	30	00	500	150
Output							
	Regular	20	20	20	20	20	250
	Ovarlime						
	Subontrad						
Outputfreoust		150	100	- 0	-60	-20	100
Inventory							
	Beginning	0	150	20	200	150	0
	Ending	150	20	20	150	0	100
	Avorage	75	30	25	175	75	50
Barklog	0	0	0	0	0	100	0

Costof aggrogale plan utilizing a level stralegy:
Output:
Regular tirte $=35 \times 1500=37500$ Oncrime
Subcontrated $=\$ 10 \times 0=0$
Imentory carrying oost
Baokordera
$=33 \times 350=$
250
Total Coxt
$\$ 11060$

Figure 2

Period		1	2	3	4	5	6
Forcosat		100	150	300	30	500	150
Output							
	Regular	200	200	200	200	300	200
	Orertime				50	50	
	Subrontract					20	
Outputformeas		100	50	-100	- 0	0	50
Inventory							
	Boginning	0	100	150	50	0	0
	Ending	100	150	50	0	0	50
	Average	50	125	100	2	0	2
Baoklog	0	0	0	0	0	0	0

Output:

JC Company p. 292

- Materials Cost: \$100/unit
- Labor: 5 hours per unit, \$4/hr RT, \$6/hr OT
- Subcontract \$20/unit (\$120-\$100 matl savings)
- Holding cost \$1.5/unit/mo
- Stockout cost \$5/unit/mo
- Hiring cost \$200
- Firing cost \$250
- Starting inventory 400 units, safety stock 25%
Jan Feb Mar Apr May June

Demand Forecast $1,800 \quad 1,500 \quad 1,100 \quad 900 \quad 1,100 \quad 1,600$

Exhibit 11.3

- Goal of 25% of sales as "safety stock"
- For planning, assume safety stock never used

Beginning Inventory
Demand Forecast
Safety Stock
(0.25*demand foreast)

Production Requirement
$\begin{array}{lrrrrrr}\text { (Forecast+SS-Begin Inv) } & 1,850 & 1,425 & 1,000 & 850 & 1,150 & 1,725 \\ \text { Ending Inventory } & 450 & 375 & 275 & 225 & 275 & 400\end{array}$

Hire and Fire, no OT: Plan 1

Production Requirement							
(Forecast+SS-Begin Inv)		1,850	1,425	1,000	850	1,150	1,725
Hours needed		9,250	7,125	5,000	4,250	5,750	8,625
Days per month		22	19	21	21	22	20
Hrs/mo/worker	176	152	168	168	176	160	
Workers needed		53	47	30	25	33	54
Workers hired	0	0	0	0	8	21	
Workers Laid off		0	6	17	5	0	0
Production Labor Cost	$\$$	37,000	$\$ 28,500$	$\$ 20,000$	$\$ 17,000$	$\$ 23,000$	$\$ 34,500$
Hiring Cost	$\$$	-	$\$$	-	$\$$	-	$\$$

Labor cost =
Hiring Cost =
Firing Cost = Total
\$ 160,000
\$ 5,800
\$ 7,000
\$ 172,800

- Start with workers needed for month 1
- May have too many at end

Constant Workforce: Plan 2

Starting Inv
Production Req Work Days
Work Hours
Actual Production
Demand Forecast
Ending Inventory
Shortage Cost
Safety Stock
Excess Inventory
Holding Cost
Labor Cost
Holding Cost
Shortage Cost

Jan	Feb	Mar	Apr	May	June
400	8	(276)	(32)	412	720
1,850	1,425	1,000	850	1,150	1,725
22	19	21	21	22	20
7,040	6,080	6,720	6,720	7,040	6,400
1,408	1,216	1,344	1,344	1,408	1,280
1,800	1,500	1,100	900	1,100	1,600
8	(276)	(32)	412	720	400
-	1,380	160	-	-	-
450	375	275	225	275	400
-	-	-	187	445	-
-	-	-	281	668	-

- Total $D=8,000$ units
- $5 * 8,000=40,000$ hours
- 125 days total $=1,000 \mathrm{hrs}$
- $40,000 / 1,000=40$ workers
- No penalty missing safety stock

Subcontract: Plan 3

		Jan	Feb	Mar	Apr	May	June
Production Req.		1,850	1,425	1,000	850	1,150	1,725
Work Days		22	19	21	21	22	20
Work Hrs		4,400	3,800	4,200	4,200	4,400	4,000
Actual production		880	760	840	840	880	800
Subcontracted		970	665	160	10	270	925
Subcontr. Cost	\$	19,400	\$13,300	\$ 3,200	\$ 200	\$ 5,400	\$18,500
Labor Cost	\$	17,600	\$15,200	\$16,800	\$16,800	\$17,600	\$16,000

Workers $=\quad 25$
Subcontr. Cost $=\$ 60,000$
Labor Cost $=\quad \$ 100,000$
Total Cost $=\quad \$ 160,000$

- April has lowest demand
- 21 days * 8 hrs = 168
- $850 * 5 / 168=25.3$ workers
- Subcontract rest

Constant Workers with OT: 4

\# workers
Work Days
Work Hrs
Reg. Production
Dem Forecast
Starting Inv
Net Inv before OT
Units OT
Ending Inv
Safety Stock
Excess Inv
Holding Cost
OT Cost
RT Cost
Holding Cost $=$
OT Cost =
RT Cost =

38

	Jan	Feb	Mar	Apr	May	June
	22	19	21	21	22	20
6,688	5,776	6,384	6,384	6,688	6,080	
1,338	1,155	1,277	1,277	1,338	1,216	
1,800	1,500	1,100	900	1,100	1,600	
400	-	-	177	554	792	
(62)	(345)	177	554	792	408	
62	345	-	-	-	-	
	-	-	177	554	792	408
	450	375	275	225	275	400
	-	-	-	329	517	8
$\$$	-	$\$$	-	$\$$	-	$\$$
	1,860	$\$ 10,350$	$\$$	-	$\$$	-
$\$$	$\$ 6,752$	$\$ 23,104$	$\$ 25,536$	$\$ 25,536$	$\$ 26,752$	$\$ 24,320$

\$ 1,281
\$ 12,210
\$ 152,000
\$165,491

- Find \# workers to do all except biggest mos in RT
- Trial and error
- Not enough safety stock

Aggregate Planning Examples: Unit Demand and Cost Data

Suppose we have the following unit demand and cost information:

Demand/mo	Jan	Feb	Mar	Apr	May	Jun
	4500	5500	7000	10000	8000	6000

Materials
Holding costs
Marginal cost of stock-out
Hiring and training cost
Layoff costs
Labor hours required
Straight time labor cost
Beginning inventory
Productive hours/worker/day
Paid straight hrs/day
\$5/unit
\$1/unit per mo.
$\$ 1.25 /$ unit per mo.
\$200/worker
\$250/worker
. 15 hrs/unit
\$8/hour
250 units
7.25

8

Cut-and-Iry Example: Determining Straight Labor Costs and Output

Given the demand and cost information below, what are the aggregate hours/worker/month, units/worker, and dollars/worker?

Demand/mo	Jan	Feb	Mar	Apr	May	Jun
	4500	5500	7000	10000	8000	6000

Productive hours/worker/day 7.25
Paid straight hrs/day
8

		Jan	Feb	Mar	Apr	May	Jun
Days/mo	22	19	21	21	22	20	
Hrs/worker/mo							
Units/worker							
$\$ /$ worker							

Cut-and-Iry Example: Determining Straight Labor Costs and Output

Given the demand and cost information below, what are the aggregate hours/worker/month, units/worker, and dollars/worker?

| Demand/mo | Jan | Feb | Mar | Apr | May | Jun | 7.25×22 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 4500 | 5500 | 7000 | 10000 | 8000 | 6000 | |

Productive hours/worker/day 7.25
Paid straight hrs/day
$22 \mathrm{x} 8 \mathrm{hrsx} \$ 8=\$ 1408$

Days/mo

Hrs/worker/mg	159.5	137.75	152.25	152.25	159.5	145
Units/worker	1063.33	918.33	1015	1015	1063.33	966.67
$\$ /$ worker	$\$ 1,408$	1,216	1,344	1,344	1,408	1,280

Chase Strategy

(Hiring \& Firing to meet demand)

Chase Strategy

(Hiring \& Firing to meet demand)

	Jan	Lets assume our current workforce is 7 workers.	
Days/mo	22		
Hrs/worker/mo	159.5	First, calculate net requirements for production, or 4500-250	
Units/worker	$1,063.33$		
$\$ /$ worker	$\$ 1,408$		

Below are the complete calculations for the remaining months in the six month planning horizon.

	Jan	Feb	Mar	Apr	May	Jun
Days/mo	22	19	21	21	22	20
Hrs/worker/mo	159.5	137.75	152.25	152.25	159.5	145
Units/worker	1,063	918	1,015	1,015	1,063	967
\$/worker	$\$ 1,408$	1,216	1,344	1,344	1,408	1,280
	Jan	Feb	Mar	Apr	May	Jun
Demand	4,500	5,500	7,000	10,000	8,000	6,000
Beg. inv.	250					
Net req.	4,250	5,500	7,000	10,000	8,000	6,000
Req. workers	3.997	5.989	6.897	9.852	7.524	6.207
Hired		2	1	3		
Fired	3				2	1
Workforce	4	6	7	10	8	7
Ending inventory	0	0	0	0	0	0

Below are the complete calculations for the remaining months in the six month planning horizon with the other costs included.

	Jan	Feb	Mar	Apr	May	Jun
Demand	4,500	5,500	7,000	10,000	8,000	6,000
Beg. inv.	250					
Net req.	4,250	5,500	7,000	10,000	8,000	6,000
Req. workers	3.997	5.989	6.897	9.852	7.524	6.207
Hired		2	1	3		
Fired	3				2	1
Workforce	4	6	7	10	8	7
Ending inventory	0	0	0	0	0	0

	Jan	Feb	Mar	Apr	May	Jun	Costs
Material	$\$ 21,250.00$	$\$ 27,500.00$	$\$ 35,000.00$	$\$ 50,000.00$	$\$ 40,000.00$	$\$ 30,000.00$	$203,750.00$
Labor	$5,627.59$	$7,282.76$	$9,268.97$	$13,241.38$	$10,593.10$	$7,944.83$	$53,958.62$
Hiring cost		400.00	200.00	600.00			$1,200.00$
Firing cost	750.00				500.00	250.00	$1,500.00$

Level Workforce Strategy (Surplus and Shortage Allowed)

This time we will seek to use a workforce level of 6 workers.

	Jan
Demand	4,500
Beg. inv.	250
Net req.	4,250
Workers	6
Production	6,380
Ending inventory	2,130
Surplus	2,130
Shortage	

Below are the complete calculations for the remaining months in the six month planning horizon.

	Jan	Feb	Mar	Apr	May	Jun
Demand	4,500	5,500	7,000	10,000	8,000	6,000
Beg. inv.	250	2,130	2,140	1,230	$-2,680$	$-1,300$
Net req.	4,250	3,370	4,860	8,770	10,680	7,300
Workers	6	6	6	6	6	6
Production	6,380	5,510	6,090	6,090	6,380	5,800
Ending inventory	2,130	2,140	1,230	$-2,680$	$-1,300$	$-1,500$
Surplus	2,130	2,140	1,230			
Shortage				2,680	1,300	1,500

Note, if we recalculate this sheet with 7 workers we would have a surplus.

Below are the complete calculations for the remaining months in the six month planning horizon with the other costs included.

Jan	Feb	Mar	Apr	May	Jun			
4,500	5,500	7,000	10,000	8,000	6,000			
250	2,130	10	-910	$-3,910$	$-1,620$			
4,250	3,370	4,860	8,770	10,680	7,300			
6	6	6	6	6	6			
6,380	5,510	6,090	6,090	6,380	5,800			
2,130	2,140	1,230	$-2,680$	$-1,300$	$-1,500$			
2,130	2,140	1,230						
			2,680	1,300	1,500			
Jan	Feb	Mar	Apr	May	Jun			
38,448	$\$ 7,296$	$\$ 8,064$	$\$ 8,064$	$\$ 8,448$	$\$ 7,680$	$\$ 48,000.00$	Labor	
31,900	27,550	30,450	30,450	31,900	29,000	$181,250.00$	Material Storage	
2,130	2,140	1,230					$5,500.00$	Stock-out
			3,350	1,625	1,875	$6,850.00$	Stock	

Note, the total costs under this strategy are less than under Chase.

Graphical Methods

Month	Expected Demand	Production Days	Demand per Day
Jan	900	22	41
Feb	700	18	39
Mar	800	21	38
Apr	1200	21	58
May	1500	22	68
June	1100	20	55
	6200	124	

$$
\text { Level = 6200/124= } 50 \text { units/day }
$$

Month	Estimated Demand/ Month	Level Production	Difference Build vs. Deplete Inv
Jan	900	1100	+200
Feb	700	900	+200
Mar	800	1050	+250
Apr	1200	1050	-150
May	1500	1100	-400
June	1100	1000	-100

Level demand: plotted cumulatively

\rightarrow Level

- Estimate

Aggregate Planning: Example

(Adapted from Chase and Aquilano,

 "Fundamentals of Operations Management", Irwin Pub., 1991)
Example: Introduction

A vacuum cleaner manufacturer tries to "plan ahead" in order to effectively address the seasonal variation appearing in the annual demand of its products. A planning horizon of 6 months is used.
The (aggregate) demand forecast for the next six months along the number of working days are as follows:

Month	Demand Forecast	No. of Working Days
Jan.	1,800	22
Febr.	1,500	19
March	1,100	21
April	900	21
May	1,100	22
June	1,600	20
	Total: 8,000 units	Total: 125 Days

IN

Example: Introduction (cont.)

The associated cost break-down is as follows:

Cost Item	Cost(\$)
Material	$\$ 100$ per unit
Inventory Holding	$\$ 5$ per unit per month
Marginal Stockout	$\$ 10$ per unit per month
Marginal Cost of Subcontracting	$\$ 20$ per unit
Cost of buying less material costs)	
Hiring and Training	$\$ 1000$ per worker
Layoff	$\$ 1500$ per worker
Regular Labor cost per hour	$\$ 15$ per employee per hour
Overtime labor cost per hour	$\$ 20$ per employee per hour

Example: Introduction (cont.)

Starting and Operating Conditions:

Current Inventory	400 units
Current Workforce	38 workers
Labor hours per unit	5 employee-hours/unit
Regular labor time per employee per day	8 hours
Inventory at the end of each month	25% of coresp. demand

The tabular approach:

Computing net requirements

Month	Beg. Inv.	Forc. Dem.	End. Inv. Prod. Req.	
Jan.	400	1,800	450	1,850
Febr.	450	1,500	375	1,425
March	375	1,100	275	1,000
April	275	900	225	850
May	225	1,100	275	1,150
June	275	1,600	400	1,725
				8,000

Plan 1: Demand Chasing

Produce exactly the quantities required for each period through regular labor, by varying the workforce size.

Month	Prod. Req.	Req. Labor Hours	Work Days	Workers	PC	WC	HC	FC
Jan.	1,850	9,550	22	53	185000	139920	1500	0
Febr.	1,425	7,125	19	47	142500	107160	0	9000
March	1,000	5,000	21	30	10000	75600	0	25500
Apil	850	4,550	21	25	85000	63000	0	7500
May	1,150	5,50	22	33	115000	87120	8000	0
June	1,725	8,625	20	54	172500	129600	21000	0
					80000	602400	4000	4200
							$T C=$	148840

Plan 1: Demand Chasing (cont.)

Plan 2: Minimum Production Workforce + Subcontracting

```
-Adjust the workforce so that the minimal monthly demand is met through regular labor.
-Subcontract all excess demand.
```

Month	Prod. Req.	Req. Labor Hours	Work Days	Workerers	Int. Prod.	Subcontrit. Quantity	PC	WC
SC								

IN

Plan 2: Minimum Production Workforce + Subcontracting

Plan 3: Anticipatory (Seasonal) Inventories + Backlogging

-Employ the minimal workforce level that can cover the total production requirements over the considered planning horizon, by working only regular hours. - Take care of the demand fluctuations by building anticipatory inventories and/or backlogging excess demand.

Month	Prod. Req.	Work Days	Workers	Act. Prod.	Inventory	Backlogs	PC	WC	IC	BC
Jan.	1,800	22	38	1338	0	62	133800	100320	0	620
Febr.	1,500	19	38	1155	0	407	115500	86640	0	4070
March	1,100	21	38	1277	0	230	127700	95760	0	2300
April	900	21	38	1277	147	0	127700	95760	735	0
May	1,100	22	38	1338	385	0	133800	100320	1925	0
June	1,600	20	38	1215	0	0	121500	91200	0	0
	8000	125		7600			760000	570000	2660	6990
									TC=	1339650

!ax

Aggregate Planning Process

Trade off analysis

Master Production Scheduling

- Develop an MPS in a make-to-stock environment.
- compute available-to-promise quantities for end items.
- The master production schedule (MPS) is a link between the firm's broad strategies and strategic plans that enables the firm to achieve its goals.
- The MPS provides essential information for functional areas such as operations, marketing, and finance.
- In this supplement, we discuss the master production scheduling process, the need for functional coordination, the way to develop an MPS, the information that an MPS provides to assist in negotiating delivery dates, and the managerial considerations for establishing and stabilizing the MPS.

Master Production Scheduling Process

DEVELOPING A MASTER PRODUCTION SCHEDULE

- The process of developing a master production schedule includes
- (1) calculating the projected on-hand inventory
- (2) determining the timing and size of the production quantities of specific products.

- Step 1. Calculate Projected On-Hand Inventories

- The first step is to calculate the projected on-hand inventory, which is an estimate of the amount of inventory available each week after demand has been satisfied:
$\left(\begin{array}{c}\text { Projected on-hand } \\ \text { inventory at the end } \\ \text { of this week }\end{array}\right)=\left(\begin{array}{c}\text { On-hand } \\ \text { inventory at the } \\ \text { end of last week }\end{array}\right)+\left(\begin{array}{c}\text { MPS quantity } \\ \text { due at the start } \\ \text { of this week }\end{array}\right)-\left(\begin{array}{c}\text { Projected } \\ \text { requirements } \\ \text { this week }\end{array}\right)$

$$
\text { Inventory }=\left(\begin{array}{c}
55 \text { chairs } \\
\text { currently } \\
\text { in stock }
\end{array}\right)+\binom{\text { MPS quantity }}{(0 \text { for week 1) }}-\left(\begin{array}{c}
38 \text { chairs already } \\
\text { promised for } \\
\text { delivery in week } 1
\end{array}\right)=17 \text { chairs }
$$

Item: Ladder-back chair			
	April		
on 55	1	2	
Forecast	30	30	
Customer orders (booked)	38	27	
Projected on-hand inventory	17		
MPS quantity	0	0	
MPS start			

Explanation:

Forecast is less than booked orders in week 1; projected on-hand inventory balance $=55+0-38=17$.

Explanation:

Forecast exceeds booked orders in week 2; projected on-hand inventory balance $=17+0-30$ $=-13$. The shortage signals a need to schedule an MPS quantity for completion in week 2.

Step 2. Determine the Timing and Size of MPS Quantities.

- The goal of determining the timing and size of MPS quantities is to maintain a nonnegative projected on-hand inventory balance.
- As shortages in inventory are detected, MPS quantities should be scheduled to cover them, much as planned receipts are scheduled in an MRP record
Inventory $=\left(\begin{array}{c}17 \text { chairs in } \\ \text { inventory at the } \\ \text { end of week } 1\end{array}\right)+\binom{$ MPS quantity }{ of 150 chairs }$-\binom{$ Forecast of }{30 chairs }$=137$ chairs इए

Order Policy: 150 units Lead Time: 1 week

Material Requirements Planning (MRP)

- is software based production planning and inventory control system used to manage manufacturing processes.
- Although it is not common nowadays, it is possible to conduct MRP by hand as well.

Balancing Supply and Demand

Order Timing

There is demand with Date Due=Period 6 Lead Times:

$$
\begin{aligned}
& A=2 \\
& B=2 \\
& C=3
\end{aligned}
$$

Periods

Begin work in period 1 to meet the due date

Back Scheduling

Capacity Requirements Planning (CRP)

- Capacity is measured in departmental and work center hours
- Load is measured in hours required by orders in the system

MRP Processing

Low Level Code Update

23.22

objectives

- Ensure materials and products are available for production and delivery to customers.
- Maintain the lowest possible level of inventory.
- Plan manufacturing activities, delivery schedules and purchasing activities

scope of MRP

- Manufacturing organizations, whatever their products, face the same daily practical problem - that customers want products to be available in a shorter time than it takes to make them. This means that some level of planning is required.

few examples

- If a company purchases insufficient quantities of an item used in manufacturing, or the wrong item, they may be unable to meet contracts to supply products by the agreed date.
- If a company purchases excessive quantities of an item, money is being wasted - the excess quantity ties up cash while it remains as stock and may never even be used at all.
- Beginning production of an order at the wrong time can cause customer deadlines to be missed.

MRP is a tool to deal with these problems

- What items are required?
- How many are required?
- When are they required?

The data that must be considered include

- The end item (or items) being created. This is sometimes called Independent Demand, or Level "0" on BOM (Bill of materials).
- How much is required at a time.
- When the quantities are required to meet demand.
- Shelf life of stored materials.
- Inventory status records. Records of net materials available for use already in stock (on hand) and materials on order from suppliers.
- Bills of materials. Details of the materials, components and subassemblies required to make each product.
- Planning Data. This includes all the restraints and directions to produce the end items. This includes such items as: Routings, Labor and Machine Standards, Quality and Testing Standards, Pull/Work Cell and Push commands, Lot sizing techniques (i.e. Fixed Lot Size, Lot-For-Lot, Economic Order Quantity), Scrap Percentages, and other inputs.

INPUTS TO MRP

1. The master production schedule and other order data
2. The-bill-of-materials file, which defines the product structure
3. The inventory record file

Bill of materials file

Outputs

- "Recommended Production Schedule" which lays out a detailed schedule of the required minimum start and completion dates, with quantities, for each step of the Routing and Bill Of Material required to satisfy the demand from the MPS.
- "Recommended Purchasing Schedule". This lays out both the dates that the purchased items should be received into the facility AND the dates that the Purchase orders, or Blanket Order Release should occur to match the production schedules.

Messages and Reports

- Purchase orders. An order to a supplier to provide materials.
- Reschedule notices. These recommend cancelling, increasing, delaying or speeding up existing orders.

MRP II is not

- a computer system
- manufacturing control system
- inventory reduction plan
- Sales \& Purchase System
- Material Management

Process Planning

- Analysis of part requirements
- Selection of raw workpiece
- Selection of manufacturing operations and their sequences
- Selection of machine tools
- Selection of tools, tool holding devices, work holding devices and inspection equipments
- Selection of manufacturing conditions i.e. cutting speed, feed and depth of cut.
- Determination of manufacturing times
- Products and their components are designed to perform certain specific functions.
- Every product has some design specifications which ensure its functionality aspects.
- Process planning acts as a bridge between design and manufacturing by translating design specifications into manufacturing process details.
- It refers to a set of instructions that are used to make a component or a part so that the design specifications are met, therefore it is major determinant of manufacturing cost and profitability of products.
- Process planning answers the questions regarding required information and activities involved in transforming raw materials into a finished product.
- The process starts with the selection of raw material and ends with the completion of part.
- The development of process plans involves mainly a set of following activities

The manual experience-based planning method

- most widely used.
- It is mainly based on a manufacturing engineer's experience and knowledge of production facilities, equipment, their capabilities, processes, and tooling.
- The major problem with this approach is that it is time consuming and developed plans may not be consistent and optimum.
- The feasibility of developed process plan is dependant on many factors such as availability of machine tools, scheduling and machine allocation etc.

Computer Aided Process Planning

- CAPP integrates and optimizes system performance into the inter-organizational flow. For example, when one changes the design, it must be able to fall back on CAPP module to generate manufacturing process and cost estimates for these design changes.
- Similarly, in case of machine breakdown on the shop floor, CAPP must generate the alternative actions so that most economical solution can be adopted in the given situation.

Advantages

- Systematic development of accurate and consistent process plans
- Reduction of cost and lead time of process planning
- Reduced skill requirements of process planners
- Increased productivity of process planners
- Higher level application programs such as cost and manufacturing lead time estimation and work standards can be interfaced
- Two major methods are used in computer aided process planning; the variant CAPP method and the generative CAPP method
- (1) The variant CAPP method (Retrieval-type CAPP systems)
- (2) The generative CAPP method

variant CAPP method

- In variant CAPP approach, a process plan for a new part is created by recalling, identifying and retrieving an existing plan for a similar part and making necessary modifications for the new part.
- Sometimes, the process plans are developed for parts representing a family of parts called 'master parts'.
- The similiarities in design attributes and manufacturing methods are exploited for the purpose of formation of part families.
- A number of methods have been developed for part family formation using coding and classification schemes of group technology (GT), similiaritycoefficient based algorithms and mathematical pragramming models.

four step process

1. Definition of coding scheme 2. Grouping parts into part families
2. Development of a standard process plan
3. Retrieval and modification of standard process plan

- A number of variant process planning schemes have been developed and are in use.
- One of the most widely used CAPP system is CAM-I developed by McDonnell-Douglas Automation Company.
- This system can be used to generate process plan for rotational, prismatic and sheetmetal parts.

generative CAPP method

- process plans are generated by means of decision logic, formulas, technology algorithms and geometry based data to perform uniquely many processing decisions for converting part from raw material to finished state.
- There are two major components of generative CAPP; a geometry based coding scheme and process knowledge in form of decision logic data.
- The geometry based coding scheme defines all geometric features for process related surfaces together with feature dimensions, locations, tolerances and the surface finish desired on the features.
- The level of detail is much greater in a generative system than a variant system.
- For example, details such as rough and finished states of the parts and process capability of machine tools to transform these parts to the desired states are provided.
- Process knowledge in form of in the form of decision logic and data matches the part geometry requirements with the manufacturing capabilities using knowledge base.
- It includes selection of processes, machine tools, jigs or fixtures, tools, inspection equipments and sequencing operations. Development of manufacturing knowledge base is backbone of generative CAPP.
- The tools that are widely used in development of this database are flow-charts, decision tables, decision trees, iterative algorithms, concept of unit machined surfaces, pattern recognition techniques and artificial intelligence techniques such as expert system shells.

Advantages of CAPP

- Reduced process planning and production lead-times
- Faster response to engineering changes in the product
- Greater process plan accuracy and consistency
- Inclusion of up-to-date information in a central database
- Improved cost estimating procedures and fewer calculation errors
- More complete and detailed process plans
- Improved production scheduling and capacity utilization
- Improved ability to introduce new manufacturing technology and rapidly update process plans to utilize theimproved technology
- There are number of difficulties in achieving the goal of complete integration between various functional areas such as design, manufacturing, process planning and inspection.
- For example, each functional area has its own stand-alone relational database and associated database management system. The software and hardware capabilities among these systems pose difficulties in full integration.
- There is a need to develop single database technology to address these difficulties.
- Other challenges include automated translation of design dimensions and tolerances into manufacturing dimensions and tolerances considering process capabilities and dimensional chains, automatic recognition of features and making CAPP systems affordable to the small and medium scale manufacturing companies.

